特定の層の材料を固定して膜厚は最適化する設定

特定の層の材料を固定して膜厚は最適化する設定が可能になりました。

400~700nm 反射防止膜を SiO2、TiO2 の構成で最適化設計し、最終層のみ MgF2 を使い たい場合を例にして説明いたします。

最適化の方法としては Needle 法と Gradual Evolution を使う方法があります。

1. 共通の設計準備作業

①Target: 400~700nm R=0%の目標を作成します。

本例では100点のターゲットをLogarithmic分割で作成しました。

Grid Generator X	🕸 400-700nm R=0% - Target Editor —	o ×
	📕 🏥 🔚 More 🔯 Preview	
Column 1: Wlgth,nm	Characteristic(s): RA ····	
<u>G</u> rid Type: Logarithmic	Angle of incidence = 0.0000	
Erom: 400.000 Io: 700.000	Jable Points = 100	
	# Wlgth,nm Ra,% DRa% Q	
	1 2 400.000 0 1.000000 -	
<u>K</u> ows:	2 402.267 0.0000 1.0000000	
	3 404.548 0.0000 1.0000000	
<u>Start:</u> 1 <u>End:</u> 100	4 406.841 0.0000 1.0000000	
	5 409.147 0.0000 1.0000000	
Commit Cancel	Commit	Cancel

② 成膜材料と基板を Import の Material から取り込み、Load します。

- ・成膜材料 : (L)SiO2, (H)TiO2, (A)MgF2
- ・基板 : B270

🍣 Laj	ver Material Catalog Import										×		
	Object Name											Surroundings	
77	Si3N4 (110-800nm, RIT)	3.1										Incident	AirlVacuum
78	Si3N4 (150-800nm, RIT)	2.5	-										
79	SiO2 (110-800nm, RIT)	2.7										 Substrate 	B 270
80	SiO2 (150-800nm, RIT)	2.5											
81	SiO2 Glass 62-7813nm	23										Thickness	1.00000
82	Silicon (2.4-121.6 nm)	6											
83	Silver (Ag)		300	350	400	450	500	550	600	650	700	Back Side	
84	SrF2 (140-500nm, RIT)												
85	SrF2 600-12000nm											Back Desig	n
86	Ta (150-795nm, RIT)											E 11	a: b.c
87	Ta (190-800nm, RIT)	0										Exit	Air Vacuum
88	Ta (2.4-121.6 nm)											1	
89	Ta2O5 (150-795nm, RIT)											Layer Materials	
90	Ta2O5 (190-800nm, RIT)											a	T:02 Caushu (200 7(
Ent	er text to search		300	350	400	450	500	550	600	650	700	ΞH	1102 Cauchy (300-70
⊆om	ment:											+ L	SiO2 (110-800nm, R
I. P. E	Borgogno, B. Lazarides, and E. Pelletier, "Aut 21 4020-4029 (1982)	omatic	determina	ation of t	he optica	al consta	nts of i	homog	eneous t	hin films,"	Appl.		11 FR G 1 (200 F
opt	En noro noro (noro)											L± A	MgF2 Cauchy (300-7
Selec	ted Objects: 3							T	ake	G	ancel	Add ->>	

③最適化したい層として SiO2 と、固定したい MgF2 の最終層の 2 層膜を Design とし て設定します。ここでは可視域の反射防止膜なので、

- (L)SiO2 : 500nm,
- (A)MgF2 : 100nm

とします。

4	2L	- Design Editor		_		X
and a second		间 More 🛕 Preview				
	Laye	ers = 2				
	*	Physical th	Material		Status	
	1	500.000	L		А	
	2	100.000	А		А	
	Σ	600.00	2		F: 0	
-						
			Commit		Cancel	

④すべて Load すると分光特性図は下のようになります。

以上が計算開始前の準備になります。

3. Needle 法を使った最適化手順

①Design Builder を開き、Needle 法のアイコンを指定します。
 固定したい MgF2(Abbr=A)の Role を Inactive にします。

igr	n Builder				P
Ç	📙 🗾 🚊 📕 🗄	귣 🖸		(X
		Start		Ter	mina
þ	Needle				^
	Deep Search Mode Sensitivi	ty Sta	indard		
#	Name		Abbr	Role	
1	TiO2 Cauchy (300-700nm)		Н	Active	*
2	SiO2 (110-800nm, RIT)		L	Active	
3	MgF2 Cauchy (300-700nm)		А	Inactive	
1	Design				
#	Thickness	Abbr		Status	
1	\$ 500.000	L		А	-
_	100.000	А		А	

②Start ボタンをクリックすると、最適化計算が開始されます。

結果は以下のとおり

History で設計のいずれも最終層が MgF2 となっていることが確認できます。

・History の 5 層膜の結果(Abbr : A=MgF2)

🖬 Design

_			
#	Thickness	Abbr	Status
1	* 371.402	L	A -
2	10.408	Н	А
3	59.438	L	А
4	15.754	Н	А
5	115.360	А	А

・Historyの7層膜の結果(Abbr:A=MgF2)

🖬 Design

#	Thickness	Abbr	Status
1	207.893	L	A -
2	4.003	Н	А
3	229.899	L	A
4	16.032	Н	А
5	49.887	L	А
6	21.072	Н	А
7	110.391	А	А

・Historyの15層膜の結果(Abbr:A=MgF2)

e C	Design		
#	Thickness	Abbr	Status
1	÷ 97.678	L	A -
2	0.651	Н	А
3	76.622	L	А
4	16.265	Н	А
5	28.962	L	А
6	68.132	Н	А
7	15.244	L	А
8	26.043	Н	A
9	115.557	L	А
10	6.347	Н	А
11	45.050	L	А
12	67.102	Н	A
13	6.444	L	А
14	32.212	Н	A
15	92.098	А	А

4. Gradual Evolution 法を使った最適化手順

①Design Builder を開き、Gradual Evolution のアイコンを指定します。
 本例では Sensitivity は High 設定の方が良い収束が得られます。

Design Bu	uilder			▼ ₽×
邎 🛛	a 🗾 🖹 🖌		Start	Terminate
📕 Gra	adual Evolution			~>
<u>D</u>	eep Search Mode S	ensitivity	High	
Tern	ninate when:			
\checkmark	N Layers >	25 and	Thickness >	1000.000
Fine	Tuning			
Incl	ude <u>M</u> aterials: <mark>H;L</mark> Only Near <u>S</u> ubstate	1	Only Near	Incident 1
🖬 De	sign			
#	Thickness		Abbr	Status
1		500.000	L	A -
2		100.000	А	А

②Fine Tuning の Include Materials から A: MgF2 のチェックを外して除外します。

Design Builder		- ₽×
≝ ⊨ Z ≗ ∠ ‡	E Start	Terminate
Z Gradual Evolution		^>
Deep Search Mode Sensitivity	/ Standard	
Terminate when:		
✓ N Layers > 25 an	d 🗌 Thickness >	1000.000
Fine Tuning		
Include <u>Materials</u> : H;L V Only Near <u>Sub</u> L A		•
🖬 Design		
# Thickness	Abbr	Status
1 🔹 500.000	L	A -
2 100.000	А	А

③基板側の層を最適化するので、Only Near Substrate をチェックします。

F	ine Tuning		
	nclude <u>M</u> aterials: <mark>H;L</mark> ✔ Only Near <u>S</u> ubstate 1	Only Near	Incident 1
63	Design		
#	Thickness	Abbr	Status
1	\$ 500.000	L	A -

②Start ボタンをクリックすると、最適化計算が開始されます。 結果は以下のとおり

5 層膜

🖬 Design

#	Thickness	Abbr	Status
1	▲ 371.402	L	A -
2	10.408	Н	А
3	59.438	L	А
4	15.754	Н	А
5	115.360	А	A

・15 層膜

🖬 Design

#	Thickness	Abbr	Status	5
1	* 184.	138 L	А	Ŧ
2	15.	703 H	А	
3	36.	182 L	A	
4	45.8	318 H	A	
5	27.	119 L	A	
6	25.	526 H	A	
7	217.0	043 L	A	
8	7.3	397 H	A	
9	153.	755 L	A	
10	8.9	909 H	A	
11	35.	335 L	A	
12	68.	173 H	A	
13	6.8	895 L	A	
14	31.4	486 H	A	
15	92.4	464 A	A	

以上