平均値目標の作成方法(Integral Value)

設計目標値が平均値(Average)の場合の設定方法につきまして説明します。

【例】

・設計目標 400~700nm R(average)≦0.5%

【手順】

- 1. 目標とする平均値の波長範囲と波長間隔を設定します(Spectra)。
- 2. ターゲット(Integral Targets)に設定した Spectra と平均分光特性使用を設定し ます。
- 1. 目標とする平均値の波長範囲と波長間隔を設定します(Spectra)。

① メニューの HOME から Spectra を選択します。

S AS	• 🗅	-	8 8 -									2024-03	3-11_AR_(int	egral-Targe	t).otfpro		Studio	
Project	Hon	ıe	Analysis	Syn	thesis	Import	Results	View	Settings	Help	_							
3		X	G	id –			0	∫ 1⊛		☆ Spectra	**	@	Ea				Copy	A Find
0	Paste			el Row		Chart Designer	Target	Integral	Color	Line	Substrate	Layer Material	Design	Load	Edit	New	Delete	Preview
Undo	Clipb	oard		Table		Chart				Databas	es					Data O	perations	

② 波長範囲のデータ作成用に名前をつけて「Commit」ボタンを押します。

本例では「400-700 1nm_step」としています。

Comment 欄は覚え書きです。

New Spectra Item	×
Item <u>T</u> ype Spectra	Commit
Name 400-700nm 1nm_step	Cancel
<u>C</u> omment	

③下のウィンドウが開きますので、赤枠のアイコンをクリックして波長範囲を指 定します。

Table Pol	nts: 1				
#	Wavelength	1	ntensit	4	
1	500.000			1.000	0000

400~700nmを1nm間隔にデータを作成すると301個のデータ数になります。

Grid Type : Equidistant (等間隔)

From:400 To:700

	Start : 1 To: 301
Grid Generator X	Grid Generator X
Column 1: Wavelength	Column 1: Wavelength
Grid Type: Logarithmic From: 500.000 Io: 500.000	Grid Type: Equidistant • Erom: 400.000 Io: 700.000
<u>R</u> ows:	<u>R</u> ows:
<u>S</u> tart: <u>1</u> <u>E</u> nd: <u>1</u>	<u>Start:</u> 1 <u>End:</u> 301
Commit Cancel	Commit Cancel

able	Points: 301		
#	Wavelength	Intensity	
1	÷ 400.000	÷ 1.000000	
2	401.000	1.000000	
3	402.000	1.000000	
4	403.000	1.000000	
5	404.000	1.000000	
6	405.000	1.000000	
7	406.000	1.000000	
8	407.000	1.000000	
9	408.000	1.000000	
10	409.000	1.000000	Ŧ

Commitボタンで設定を確定します。

- 2. ターゲット(Integral Targets)に設定した Spectra と平均分光特性使用を設定し ます。
- ① メニューから Integral を選択後、New をクリックします。

📚 🗛	• D	- E	46.4										* Untitle	d.otfproj - OTI	Stud	lio		
Project	Hom	ie	Analysis	Syn	thesis	Import	Results	View S	tings	Help								
5			Co	lumn			6	∫f⊛		🔆 Spectra		**	(Fa)			n	Сору	🚓 Find
		ß	Gr	id –					-	Cone	Ų.		•		Ľ.,		Rename	
C	Paste		₩, De	l Row	••••	Chart Designer	Targe	Integral	Color	🕩 Line	Substrate	Layer Material	Design	Load E	lit	New	Delete	Preview
Undo	Clipb	oard		Table		Chart				Databas	es					Data Op	rations	

② ターゲットに名前を付けて「Commit」ボタンで確定します。
 本例での名前は「int_tgt 400-700nm R≤0.5%」とします。

New Integral Target Item	×
Item <u>T</u> ype	
Integral Target	Commit
Name	
int_tgt 400-700nm R≦0.5%	Cancel
<u>C</u> omment	

③下の初期設定画面が表示されます。

👂 iı	nt_tgt 400-700ni	m R≦0.5% -I	ntegral Target Editor		_		×
-	More						
Inte	gral <u>T</u> argets:	1	<u>N</u> ormalized ✓] Tra <u>p</u> ezoid			
#	Angle,°	Char	Spectrum	Target	Tol9	6	Q
1	0.0000	TS		100.000000	1.000	00000	
				Com	nmit	Ca	ncel

④次の項目を▼から選択、および数値設定後、「Commit」で確定します。

Normalized(半均值)	: ON(チェック)
Trapezoid (台形公式平均值)	: OFF(チェック)
Char (分光特性の種類)	: Ra(反射[平均偏光]選択)
Spectrum (波長範囲)	: 400-700nm 1nm_step(選択)
Target(目標值)	: 0.5(数值入力)
Q(数値の条件)	: B (Below:以下)

4	2	*int_	_tgt 400-700		_			\times					
and the second s			i More										
l	nte	egra	al <u>T</u> argets:		1	✓ <u>N</u> ormalized] Tra	pezoid					
;	#		Angle,°	Char	ſ	Spectrum		Target		Tol%		Q	2
	1	* *	0.0000	RA	~	400-700nm 1nm -	*	0.500000	*	1.0000	0000	В	-
								Con	mit		()	ncol	
								Con			Ca	ncel	

⑤Commit 後に Load すると、Environment ウィンドウに表示されます。

	Environment	▼ ₽ ×
	Targets	
-	🛨 🮯 Target	
ti	– ∫t⊛ Integral Target	int_tgt 400-700nm R≦0.5%
	Weight	1.000000
	🗆 ⋗ Color Target	
t∢	Weight	1.000000

3. 用語説明(ケイワンの見解です)

<u>http://www.caywan.com/Integral_Value_Japanese.pdf</u> も併せてご覧ください。

1		*int	_tgt 400-700r	nm R≦0.	5% -	Integral Target Editor	r			-		×	
and a second			More										
	Int	egra	al <u>T</u> argets:		1	✓ <u>N</u> ormalized	✓ Normalized ☐ Trapezoid						
	# Angle,°		Char		Spectrum		Target		Tol%		Q		
	1	* *	0.0000	RA	•	400-700nm 1nm 👻	* *	0.500000	*	1.000	0000	в -	
								Con	nmit		Ca	ncel]

[Normalized]

正規化という表現が適切なのですが、平均値という言葉を使った方が理解しやすいために、本解説では平均値にしました。

Spectrum で設定した各波長の数値を平均化します。

この方法は、通常の仕様書では平均値を要求される場合、等間隔の波長ステ ップで考えますが、例えば波長間隔として非等間隔が設定されている場合、計 算した積分の近似値の信頼性が低下する危険があります。

Normalized を使用する場合は、Trapezoid のチェックを外しておく必要があります。

[Trapezoid]

台形公式を使った本来の積分近似値の計算をする場合は、こちらをチェック します。こちらの方式は各波長の値の平均ではなく、近似積分式を使いますの で、より正しい値が得られます。しかしながら、平均値が製品の購入者側から 提示された仕様の場合、購入者側も近似積分で計算確認する必要があるために、 あまり使われないものと思われます。